Bounded invariant verification for time-delayed nonlinear networked dynamical systems
نویسندگان
چکیده
We present a technique for bounded invariant verification of nonlinear networked dynamical systems with delayed interconnections. The underlying problem in precise boundedtime verification lieswith computing bounds on the sensitivity of trajectories (or solutions) to changes in initial states and inputs of the system. For large networks, computing this sensitivity with precision guarantees is challenging. We introduce the notion of input-to-state (IS) discrepancy of each module or subsystem in a larger nonlinear networked dynamical system. The IS discrepancy bounds the distance between two solutions or trajectories of a module in terms of their initial states and their inputs. Given the IS discrepancy functions of the modules, we show that it is possible to effectively construct a reduced (low dimensional) time-delayed dynamical system, such that the trajectory of this reducedmodel precisely bounds the distance between the trajectories of the complete network with changed initial states. Using the above resultswe develop a sound and relatively complete algorithm for bounded invariant verification of networked dynamical systems consisting of nonlinear modules interacting through possibly delayed signals. Finally, we introduce a local version of IS discrepancy and show that it is possible to compute them using only the Lipschitz constant and the Jacobian of the dynamic function of the modules. Published by Elsevier Ltd.
منابع مشابه
Stability analysis of nonlinear hybrid delayed systems described by impulsive fuzzy differential equations
In this paper we introduce some stability criteria of nonlinear hybrid systems with time delay described by impulsive hybrid fuzzy system of differential equations. Firstly, a comparison principle for fuzzy differential system based on a notion of upper quasi-monotone nondecreasing is presented. Here, for stability analysis of fuzzy dynamical systems, vector Lyapunov-like functions are defined....
متن کاملFinite time stabilization of time-delay nonlinear systems with uncertainty and time-varying delay
In this paper, the problem of finite-time stability and finite-time stabilization for a specific class of dynamical systems with nonlinear functions in the presence time-varying delay and norm-bounded uncertainty terms is investigated. Nonlinear functions are considered to satisfy the Lipchitz conditions. At first, sufficient conditions to guarantee the finite-time stability for time-delay nonl...
متن کاملValidated Simulation-Based Verification of Delayed Differential Dynamics
Verification by simulation, based on covering the set of time-bounded trajectories of a dynamical system evolving from the initial state set by means of a finite sample of initial states plus a sensitivity argument, has recently attracted interest due to the availability of powerful simulators for rich classes of dynamical systems. System models addressed by such techniques involve ordinary dif...
متن کاملConstruction of strict Lyapunov function for nonlinear parameterised perturbed systems
In this paper, global uniform exponential stability of perturbed dynamical systems is studied by using Lyapunov techniques. The system presents a perturbation term which is bounded by an integrable function with the assumption that the nominal system is globally uniformly exponentially stable. Some examples in dimensional two are given to illustrate the applicability of the main results.
متن کاملTime Delay and Data Dropout Compensation in Networked Control Systems Using Extended Kalman Filter
In networked control systems, time delay and data dropout can degrade the performance of the control system and even destabilize the system. In the present paper, the Extended Kalman filter is employed to compensate the effects of time delay and data dropout in feedforward and feedback paths of networked control systems. In the proposed method, the extended Kalman filter is used as an observer ...
متن کامل